skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Siwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Non-collinear spin texture has attracted great attention since it provides an important probe of the interaction between electron and topological spin textures. While it has been widely reported in chiral magnets, oxide heterostructures, and hybrid systems such as ferromagnet/heavy metal and ferromagnet/topological insulators, the study of non-collinear spin texture in two-dimensional (2D) van der Waals (vdW) dilute magnetic semiconductor (DMS) monolayers is relatively lacking, hindering the understanding at the atomically thin scale. Here, we probe the temperature-dependent antisymmetric humps in Hall resistivity by utilizing the proximity coupling of Fe-doped monolayer WSe2 (Fe:WSe2) synthesized using chemical vapor deposition on a Pt Hall bar. Multiple characterization methods were employed to demonstrate that Fe atoms substitutionally replace W atoms, making a 2D vdW DMS at room temperature. Distinct from the intrinsic anomalous Hall effect, we found the transverse Hall resistivity of Fe:WSe2 displaying two additional antisymmetric peak features in the temperature-dependent measurements. These peaks are attributed to the magnetic features at the Fe:WSe2 and Pt interface. Our work shows that a DMS synthesized from 2D vdW transition metal dichalcogenides is promising for realizing magnetic and spintronic applications. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. Membraneless organelles within the living cell use phase separation of biomolecules coupled with enzymatic reactions to regulate cellular processes. The diverse functions of these biomolecular condensates motivate the pursuit of simpler in vitro models that exhibit primitive forms of self-regulation based on internal feedback mechanisms. Here, we investigate one such model based on complex coacervation of the enzyme catalase with an oppositely charge polyelectrolyte DEAE-dextran to form pH-responsive catalytic droplets. Upon addition of hydrogen peroxide “fuel”, enzyme activity localized within the droplets causes a rapid increase in the pH. Under appropriate conditions, this reaction-induced pH change triggers coacervate dissolution owing to its pH-responsive phase behavior. Notably, this destabilizing effect of the enzymatic reaction on phase separation depends on droplet size owing to the diffusive delivery and removal of reaction components. Reaction-diffusion models informed by the experimental data show that larger drops support larger changes in the local pH thereby enhancing their dissolution relative to smaller droplets. Together, these results provide a basis for achieving droplet size control based on negative feedback between pH-dependent phase separation and pH-changing enzymatic reactions. 
    more » « less